
1

OPEN SOURCE
CONTRIBUTIONS

Contains	proprietary	and	confiden0al	informa0on	owned	by	Synacor,	Inc.	©	/	2017	Synacor,	Inc.	

2

ZIMBRA BECOMES AN
OPEN SOURCE PROJECT

Open Source Contributions

3

ZIMBRA SOURCE CODE
AVAILABLE
•  Zimbra has been open source since its inception

But …
•  Source code was difficult to get access to

•  Product was difficult to build even if you got
access to it

•  Contribution Agreement was difficult
•  Contributions were often ignored in Bugzilla

•  No internal processes for handling
contributions

All	of	this	together	
created	a	large	
barrier	for	
community	
members	

•  Zimbra might have been open, but development
was closed

4

PROJECT TRANSFORMATION

•  Zimbra has transformed
•  Code is easily available and is easy to build
•  Barriers to contributions are gone
•  Contributions

•  Easy to see what is out-standing
•  Built in code review (with automation)

•  Clear interaction with
development team

•  Clear understanding of when
contributions are included

•  Can be seem by everyone
•  Internal processes in place to handle

contributions

Zimbra	is	now	an	
Open	Source	

Project	

5

HOW DID WE GET THERE?
Open Source Contributions

6

MOVING FROM PERFORCE...

•  For a long time, Zimbra utilized Perforce internally
for version control

•  A copy of Perforce data was publicly
exposed

•  Later moved to being mirrored via Git
protocol

•  Very often this crashed and was not
accessible or just did not work

•  Community members did not use same
source code to build FOSS version

•  This caused many, many problems

Perfoce’s	
GitFusion	product	

was	used	to	
expose	a	view	of	
the	source	code	

via	Git	

7

... TO GITHUB

•  Zimbra code base is now hosted on GitHub
(utilizing Git for Source Control)

•  GitHub is one of the largest Open Source
repository hosting sites

•  Expected by most Open Source developers
•  Code is made highly available.
•  Contributions tied to developers community

profile (contributions benefit the contributor)
•  Synacor Engineering team uses the same

repositories for all development

Zimbra	began	the	
process	of	moving	
to	GitHub	aNer	

v8.7.0		
(June	2016)	

	
Version	8.7.1	was	
the	last	version	
created	out	of	

Perforce	

8

CODE BRANCHES

•  Each repository has several branches associated
with it

•  “master” branch represents the most recent
released code

•  “develop” branch is code staged for next
release

•  “feature” and “bug” branches represent on-
going development

•  Easy to track what is in a release, what is about to
be released and what is in development

•  After integration, easy to see “change sets”

master	and	
development		

Integrated	feature	
and	bug	branches	

9

REFACTORING MONOLITHIC
CODEBASE

•  Zimbra has a very large code base
•  Perforce repository exposed through Git was

approx. 17GB
•  Code was monolithic and made up of many inter-

related packages
•  Hard to navigate and comprehend

Building	Zimbra	
required	

downloading	
~17GB	of	source	
code	and	binaries	

10

REFACTORING MONOLITHIC
CODEBASE - CONTINUED

•  With the move to GitHub, this single, monolithic
code base was been broken up into components

•  Goal is to have each repository represent a single
package/library

•  Each repository has a unique purpose
•  Contributions to one repository does not mean

entire product changes
•  Future benefit for upgrades

Building	based	on	
new	repositories	
only	requires	

~1GB	

11

CHANGES IN PROCESS

•  Engineering team moved from a single, large team executing against (multi) year-
long targets to smaller Agile-based (SCRUM) teams delivering on a predictable
cycle

•  Moving to Git meant the team was no longer tied to Perforce’s archaic process
models

•  The team has implemented a clear branching model which allows them to
control when something is added to the code base

•  No more half-committed features/fixes
•  Contributions are packaged as independent “change sets” and can be merged

when appropriate
•  Internal development and Community contributions follow the same review and

merge process
•  Isolated changes can be independently tested/verified

•  Mandated by process to occur before inclusion

12

NEW RELEASE CYCLES

•  Zimbra was previously released after long
development cycles

•  Zimbra is now released from Engineering every 2
weeks

•  Zimbra Product team still responsible for
product versions and when official builds are
produced

Shorter	release	
cycle	means:	

	
community	

contribu0ons	are	
incorporated	

rapidly	
	

new	features/bug	
fixes	make	it	to	
the	community	

faster	

13

AUTOMATION

•  Automation has been introduced at almost every
level of development

•  Pull-requests (both internal and community
contributions) are statically analyzed and built
with Continuous Integration tools which test the
code

•  Results of checks are added as comments in
the code review

•  Contribution Agreement acceptance is integrated
into pull-requests. “One-click”, online acceptance
as part of pull-request.

•  Has lead to obvious quality improvements in
code

Automated	checks	
as	part	of	code	

review	

14

HOW DOES IT WORK?
Open Source Contributions

15

CONTRIBUTIONS AND
COMMUNITY PULL REQUESTS

•  Contributions can be easily made by submitting a
pull-request on GitHub

•  GitHub’s code review tools are utilized to review
the contribution (both automated and manually)

•  The code is merged into a “bug” or “feature”
branch and then merged into “develop” for
inclusion in a release

•  The next release, after inclusion in “develop”, will
include the contribution

Low-fric0on	
contribu0ons	and	
a	well-defined	
process	mean	

quicker	inclusion	
of	contribu0ons		

16

WHERE DO I GO?

Zimbra on GitHub: https://github.com/Zimbra

To build Zimbra Open Source: https://github.com/Zimbra/zm-build

Static Analysis: https://www.codacy.com/app/Synacor/REPOSITORY/dashboard
Where REPOSITORY is the GitHub repository name
Ex: https://www.codacy.com/app/Synacor/zm-mailbox/dashboard

Zimbra Documentation is Open Source too! [CC BY-SA 4.0]
Installation Guides: https://github.com/Zimbra/installguides
 https://zimbra.github.io/installguides/ (for online reading)
Administrators Guide: https://github.com/Zimbra/adminguide
 https://zimbra.github.io/adminguide/ (for online reading)

17

QUESTIONS?
Open Source Contributions

18

THANK YOU

18	

19

EXTENSIBILITY IN
ZIMBRA

Contains	proprietary	and	confiden0al	informa0on	owned	by	Synacor,	Inc.	©	/	2017	Synacor,	Inc.	

20

Agenda

•  What is Extensibility?
•  Extending Zimbra with

Zimlets & Extensions.
•  What is a Zimlet?
•  What all can a Zimlet do?
•  Benefits
•  Examples
•  Limitations

21

A truly Extensible Software allows 3rd Party/External
developers to extend and enhance it further even after
they have been compiled and released.

Why Software products needs to be extensible?

22

FLEXIBILITY &
EXTENSIBILITY

Add/modify/remove features with ease

23

EXTENDING ZIMBRA
Zimlets, Admin & Server Extensions.

24

WHAT IS A ZIMLET?

25

WHAT CAN A ZIMLET DO?

26

THINGS THAT CAN BE DONE USING ZIMLETS

•  Create new Tab/Application.

•  Hide/Disable unwanted UI elements.

•  Add buttons/menu to toolbar.

•  Add items to context menus.

•  Pattern matching in email content while sending.

•  Define & use custom widgets.

•  Drag & Drop items into zimlet panel.

•  Integrating with 3rd party APIs.

•  Displaying content into widgets from outside APIs.

27

EXAMPLES: ADD ON FEATURES AS ZIMLETS/EXTENSIONS

•  Integrate with other products by fetching data through API into Widgets.

•  Right click a flight number to see the status of the flight arrival time.

•  Right click on a name, address, or phone number to update your address book.

•  Right click on a date to schedule a meeting.

•  Mouse-over a date or time, and see what's in your calendar.

•  Mouse-over a physical address, and see a map or even driving directions and
estimated arrival time.

•  Mouse-over a customer email address or case tracking number, and see its status.

•  Mouse-over an purchase order, see its status, approve/reject and so on.

28

BENEFITS OF ZIMLETS

29

FEATURES & BENEFITS OF ZIMLETS

•  Allows extending the existing platform/product with new features.
•  Offers flexibility to customize the platform as per need.

•  Easy integration with external products.

•  Allows offering features to selected users/groups.

•  Easily pluggable to existing ZCS installations.

•  Zimlets have full access to Core Zimbra JS.
•  Easy to Use API hooks.

•  Zimlets can be made mandatory (feels like core feature to end user).

•  Zimlets can easily be upgraded.

•  Zimlets have very small learning curve.

30

KINDS OF API’S

1.  Zimlet Framework APIs: APIs for creating Zimlet.
•  XML APIs: Help describe Zimlet & basic functionalities.
•  JavaScript APIs: Helps implement advanced functionalities.

2.  Zimbra SOAP/JSON/REST APIs: APIs to make calls to Zimbra Server & extend
Zimbra.

3.  Zimbra Widget APIs: JavaScript API to create widgets like buttons, menus, dialog

boxes etc.

31

ZIMBRA DEFAULT
FEATURES AS ZIMLETS

Pluggable features in Zimbra Web Client

32

ZIMBRA DEFAULT FEATURES AS ZIMLETS

•  Undo Send, cancel sending of message.
•  Attach Mail/Contacts while composing email.
•  Archive Mail feature.
•  Schedule & join WebEx meetings.
•  Search terms highlighter in emails.
•  Highlighting dates & previous appointments.
•  Creating appointments directly from dates highlighted in emails.
•  Preview associated contact details for an email address.

33

ZIMLETS DEMO

34

CORE VS ZIMLETS
Which way to implement a feature?

35

LIMITATIONS WITH ZIMLETS

•  Not always upgrade safe.
•  Load Timing for a zimlet can limit customizations at times.
•  Executes after default packages are loaded.
•  Cannot affect the default loading view. (Possibly implement at Skin level.)
•  Certain features can turn out to be difficult implementing the zimlet way.

36

ZIMLET 101
Getting started with Zimlet development

37

Agenda

•  Kinds of Zimlets
•  Zimlet Structure
•  Writing a Zimlet
•  Global App Context
•  Zimlet User Properties
•  Zimlet API & Hooks
•  Dialogs
•  Managing Zimlets

38

KINDS	OF	ZIMLETS

Service Zimlets
Zimlets that connects to some external service and brings/posts information to ZCS
e.g: WebEx, Flight Tracker, Weather Info etc

Extension Zimlets

Zimlets that extends Zimbra’s core features to provide some extra functionality. These don’t
deal with external service.
e.g.: Email Attacher, Sticky Notes, Undo Send, Archive Mails etc

Content or Inline Zimlets
Zimlets that scans the message’s or Contact’s content(body) for some words and converts
them to links. These links further provides additional functionalities & events.
e.g: Bugzilla, Email, URL links, Highlight Phone No., Date zimlet etc

39

TYPICAL ZIMLET STRUCTURE

•  Zimlet	descrip0on	xml	file(e.g.	com_zimbra_test.xml)	
	Zimlet	informa0on,	things	like:	Zimlet	name,	Zimlet	version,	user	proper0es	

•  A	JavaScript	file	(e.g.	com_zimbra_test.js)	
This	is	the	main	file	that	does	all	the	zimlet	hard	work.		

•  CSS	file(e.g.	com_zimbra_test.css)	
Style-sheet	that	you	might	use	to	style	a	Zimlet	dialog/form	fields	or	anything.	

•  config_template.xml	file	
Contains	configura0on	informa0on	like	“alloweddomains	“ property	&	global	
configura0ons		
	
*	Op/onal:	icon/images,	*.jsp	file,	*.template	file,	*.proper0es	i18N	file	

40

ZIMLET CONFIGURATION FILE

This file should be hardcoded as config_template.xml

<zimletConfig name=”com_zimbra_example” version=”1.0”>
 <global>
 <property name=”serverUrl”>example.com</property>
 <property name="allowedDomains">*.google.com,*.example.com</property>
 </global>
</zimletConfig>

Properties can be accessed as:
•  Within Zimlet definition file: ${config.global.serverUrl}
•  Within JavaScript handler file: this.getConfig(“serverUrl”)

41

WRITING A ZIMLET
What it takes to create one..

42

ZIMLET XML VS JS API

Zimlet
XML/JS

API

•  XML API: Use it to descript the Zimlet.

•  JS API: Use it to implement both basic &
advanced functionalities

43

MINIMAL STEPS TO GET A ZIMLET READY FOR USE

1.  Create Zimlet XML configuration file with minimal configuration.

2.  Create JavaScript Handler file.

3.  Use Zimlet hooks/Api’s and define functions to customize/enhance the behavior in
JS handler.

4.  Add any other optional resources like stylesheets, images, I18n files etc

5.  Create zip package for the zimlet.

6.  Deploy using CLI or Zimbra Admin Console.

7.  Access the feature using Zimbra Web Client.

44

APPCTXT
Zimbra Global Object

45

APPLICATION	CONTEXT

appCtxt (ZmAppCtxt.js) is a global object that provides access to various applications, dialog boxes
and also centrally stores information about current application and about current user information,
preferences etc.

When an application is loaded and active:

appCtxt.getCurrentApp() – returns current application object
appCtxt.getCurrentAppName() –returns current app’s name
appCtxt.getCurrentController() –returns current app’s controller

Several Zimbra’s widgets also register themselves to appCtxt
appCtxt.getNewFolderDialog().popup() - shows Folder dialog widget
appCtxt.getNewCalendarDialog().popup() – shows New Calendar dialog widget

Access Account information:

appCtxt.getActiveAccount() – returns active account
appCtxt.getActiveAccount().settings –returns all preferences/settings

46

ZIMLET USER PROPERTIES

47

USER PROPERTIES

User properties enable zimlets to store user state/properties with the zimlet.

User Properties can be used to:

•  Create custom user level preferences stored at server.
•  Create feature preferences.
•  Store user specific persistent data.

If a zimlet defines user properties and the zimlet has
a <zimbraPanelItem>, a property editor dialog is
presented when the panel item is double-clicked.

48

ZIMLET API & HOOKS

•  Drag & Drop items into Zimlet Panel.
•  Creating simple tab application.
•  Adding button to toolbar.

49

DIALOGS

50

WRITING ADMIN
EXTENSIONS

•  hbps://wiki.zimbra.com/wiki/Extending_Admin_UI	

51

MANAGING ZIMLETS

52

USING ADMIN CONSOLE
•  Login to admin console > Configure > Zimlets > Deploy
•  Remember to select Flush Zimlet cache checkbox if you are upgrading
•  Best practice: Always uninstall Zimlet before upgrading

53

MANAGING ZIMLETS USING CLI

zmzimletctl - This command is used to manage Zimlets and to list all zimlets on the
server.

su – zimbra - Run as Zimbra

zmzimletctl deploy <path to zimlet.zip>
- This will registers zimlet information in LDAP, installs the zimlet, adds the zimlet to
default COS and turns on the zimlet. It adds the Zimlet files to zimlets-deployed(opt/
zimbra/zimlets-deployed <zimletName>) folder

zmzimletctl undeploy <just the zimlet name>
- This will undeploy the Zimlet

54

MANAGING ZIMLETS (CONTD.)

zmzimletctl listZimlets
- Lists all available Zimlets in 3 sections: Host, LDAP and COS .
- Host: indicates all those Zimlets that are installed (not necessarily deployed (in ldap))
and basically means, they are physically present in zimlets-deployed folder.
- LDAP: Shows the list of Zimlets that actually registered in LDAP
- COS <cosname>: Shows the list of Zimlets that are turned ON

Notes:
- For Zimlet to work, it must be listed on all three areas.
-  In multimode environment, you will see these three sections for each node.

55

MANAGING ZIMLETS (CONTD.)

Example:
Installed Zimlet files on this host:
 com_zimbra_date
 com_zimbra_email
 com_zimbra_attachcontacts
 com_zimbra_oldzimlet
Installed Zimlets in LDAP:
 com_zimbra_date
 com_zimbra_email
 com_zimbra_attachcontacts
Available Zimlets in COS:
 default:
 com_zimbra_date
 com_zimbra_email

In the above example, users on ‘default’ COS:
- Have access to com_zimbra_date and com_zimbra_email.
- Don’t have access to com_zimbra_attachcontacts zimlet (its deployed but is turned OFF)

56

MANAGING ZIMLETS (CONTD.)

zmprov fc zimlet
 Flushes Zimlet cache. Use this whenever you want to make sure to clear stale
 zimlet information.

zmzimletctl listPriority

List the priorities of all Zimlets.

zmzimletctl setPrority

Set a Priority to a Zimlet. Priorities can be set to Zimlets to ensure that a particular
Zimlet to be used over another similar zimlet. Like: You might have two different
phone zimlets using two different services. You can use priority to make sure
which one should be used.

For all other zmzimletctl commands:
zmzimletctl help

57

CONFIGURING A
DEVELOPER
ENVIRONMENT

Zimlet Development

58

DEVELOPER ENVIRONMENT FOR ZIMLETS

_dev folder for Zimlets
•  Create a folder _dev under /opt/zimbra/zimlets-deployed folder and keep the zimlet

under development within that. For example: /opt/zimbra/zimlets-deployed/_dev/
com_zimbra_test

•  Any Zimlet under _dev folder will automatically be picked up by Zimbra without actual
deployment.

•  Any changes to this file will be automatically reflected when the browser is refreshed.
•  Files are not obfuscated and merged with other Zimlet files
•  JSP files can be placed within the Zimlet folder. It will be compiled every time browser is

refreshed
•  Jar files should be manually copied to /opt/zimbra/jetty/webapps/zimlet/WEB-INF/ folder
•  If .class file is used, it must be manually copied to /opt/zimbra/jetty/webapps/zimlet/WEB-

INF/<path of the package>/<dot-class file>

59

DEPLOYING ZIMLET USING CLI

This is mainly useful when ZCS Server is remote or inside a Virtual Machine.

•  Zip all the files inside the zimlet in a zip file. (Zimlet files should directly be inside

zip). Ex: zip –r com_zimbra_test.zip *

•  Optionally you can do zmzimletctl fc zimlet to flush zimlet cache from Zimbra Server.

•  zmzimletctl deploy path-to-your-zimlet/com_zimbra_test.zip

60

DEVELOPER MODE

?dev=1 (developer mode for Core-Zimbra Web Client)
•  Open Zimbra Web Client with ?dev=1 attribute.
 E.g.: http://www.zimbramail.com/zimbra/?dev=1

•  Zimbra loads all JavaScript files individually and doesn’t obfuscate them.

•  Zimbra loads JavaScript files of all applications even if they are not going to be used (no
lazy loading).

•  Much slower but helps in debugging

61

DEVELOPER MODE

62

PRODUCTION MODE

Lazy loading is ON. i.e. Zimbra loads only those packages that are necessary.
•  For example: Zimbra loads all JS files for Mail App, but not Calendar App. It will

lazily loads JS required for Calendar App only when the user actually clicks on
Calendar tab.

We merge, zip and obfuscate (remove comments, shorten function names etc) to
reduce JS footprint in order to quickly load Zimbra.

•  For example: SendEmail(param1, param2) might look like A(p1, p2)
•  All deployed Zimlets are merged in Zimlets-nodev_all.js

63

PRODUCTION MODE

64

ADDITIONAL TIPS

•  You can use _dev Zimlet mode while you are still using Zimbra’s Production mode
(i.e. no ?dev=1).

•  In this case, JavaScript files that are part of Zimlet are not obfuscated while that
of core-Zimbra and all other Zimlets (that are deployed) will be.

•  This *greatly* helps to cut down development time since Zimbra loads much
faster (obfuscates all core JavaScript files).

•  If you are calling some functions say from Contacts or Calendar etc in your Zimlet,
make sure to load that package because it might work in Dev mode but would
break in Production mode.

•  Make sure to not have debugger statements in production mode.
•  Always make sure to test your Zimlets in production mode.

65

CLIENT SIDE DEBUGGING
Debugging/Development

66

THINGS TO USE WHILE DEBUGGING CLIENT SIDE CODE

•  Preferably use dev mode i.e. ?dev=1.
•  JavaScript Debug point & track the call stack .
•  XHR breakpoints
•  Conditional Breakpoints
•  DOM breakpoints
•  Event listener breakpoints.

67

ZIMLET ARCHITECTURE
Advanced Zimlet Development

68

TYPICAL ZIMLET STRUCTURE

•  Zimlet	descrip0on	xml	file(e.g.	com_zimbra_test.xml)	
	Zimlet	informa0on,	things	like:	Zimlet	name,	Zimlet	version,	user	proper0es	

•  A	JavaScript	file	(e.g.	com_zimbra_test.js)	
This	is	the	main	file	that	does	all	the	zimlet	hard	work.		

•  CSS	file(e.g.	com_zimbra_test.css)	
Style-sheet	that	you	might	use	to	style	a	Zimlet	dialog/form	fields	or	anything.	

•  config_template.xml	file	
Contains	configura0on	informa0on	like	“alloweddomains	“	property	&	global	
configura0ons.			
*	Op/onal:	icon/images,	*.jsp	file,	*.template	file,	*.proper0es	i18N	file	

69

ZIMLET APIs
Ways to implement a zimlet.

70

WAYS TO IMPLEMENT A ZIMLET

Using only XML API

•  You can do some of the basic actions

using just the xml-api although
enough for few content Zimlets

•  Limited set of features(e.g. you can’t
design your own dialog box or create
a Zimbra entity(like a folder, tag etc)

•  No debugging & almost impossible to
write Extension Zimlets.

Using JavaScript & XML API

•  You can write some really complex

Zimlets with relative ease (having
Zimbra written in pure JavaScript.)

•  Browsers provide excellent
debugging tools. (Ex: Chrome
DevTools for Chrome)

•  You can still use the xml api for certain
purposes like creating a panel item,
context-menus etc. (i.e. a mix of the
XML and JS APIs)

71

ZIMLET XML API

72

EXAMPLE: ZIMLET DEFINITION FILE

Overview Panel Zimlet with click, double click and menu selected options
(com_zimbra_hellopanel)
<zimlet name="com_zimbra_hellopanel" version="0.1” label=“Hello Panel Zimlet”
description="Demos init, click, dbl-click and rt-click on zimlet icon">
 <include>hellopanel.js</include> //include JS file to handle click, dblclick etc
 <includeCSS>hellopanel.css</includeCSS> // include CSS file to store icon’s CSS
 <handlerObject>com_zimbra_hellopanel</handlerObject> // include main Zimlet JS class name
 <zimletPanelItem label="hellopanel" icon="hellopanel-panelIcon"> //Add a panel icon(CSS name)
 <toolTipText>Click,dblclick and rtclick on me</toolTipText> // tooltip for panel icon

 <contextMenu> //add context menu with two items
 <menuItem label="Mail App Item" icon="MailApp" id="hellopanel_mailAppId"/>
 <menuItem label="Contacts App Item" icon="ContactsApp"

id="hellopanel_contactsAppId"/>
 </contextMenu>

 </zimletPanelItem>
</zimlet>

73

BASIC ZIMLET DEFINITION XML TAGS: <ZIMLET>

It is the enclosing element in the definition file.

Attributes:
•  name (required): The name attribute is the Zimlet’s name. The Zimlet name is

required to be unique within a deployment & should match with XML file name.
•  version (required): Specifies the Zimlet’s version.
•  Description: This attribute provides a short (approximately one line) description

used in mouse-overs and dialogs.
•  label: Specifies the display name for the zimlet. (Ex: Name in preferences).
•  target: Used to specify the view target where zimlet should be loaded.

•  main (default): Main Zimbra Web Client Application.
•  compose-window: Compose mail in new window.
•  view-window: Viewing mail in new window.

74

ZIMLET DEFINITION FILE: ADDITIONAL TAGS

•  <include>: Indicates JavaScript files used by the Zimlet. The listed JavaScript files
are automatically loaded by the Zimlet framework in the order specified in the
definition file.

•  <includeCSS>: Indicates CSS style sheet files used by the Zimlet. The listed files are
automatically loaded by the Zimlet framework in the order specified.

•  <resource>: Indicates additional resource files, such as GIF or JPEG images.
•  <handlerObject>: Name of the top level JavaScript object. The object must

declare ZimletBase as the prototype. The object is automatically instantiated by
Zimlet framework.

•  <zimletPanelItem>: Creates an entry in the Zimlet panel area.
 Supported attributes: label & icon.
 May contain following elements: toolTipText, dragSource, contextMenu.

•  <userProperties>: Lists per-user properties used by the Zimlet using <property>.

75

ZIMLET JS API

76

HANDLER OBJECT JS FILE

//Constructor.
function com_zimbra_myzimlet_HandlerObject() {
};

com_zimbra_myzimlet_HandlerObject.prototype = new ZmZimletBase();
com_zimbra_myzimlet_HandlerObject.prototype.constructor =
com_zimbra_myzimlet_HandlerObject;

//Simplify handler object notation.
var MyZimlet = com_zimbra_myzimlet_HandlerObject;

//Initializes the zimlet.
MyZimlet.prototype.init = function() {
 // do something...
};

77

ZIMLET JS CLASS HIERARCHY

•  The Zimlet handler function extends	the	
ZmZimletBase	JS	class.	
-  init()	called	only	once	during	ini0aliza0on.	
-  Include	the	JS	file	for	the	Handler	Object.	
-  Specify	the	Zimlet	JS	Handler	Object	in	the	Zimlet	

Defini0on	File.	

	

MyZimlet	(Zimlet	handler	
object)	

ZmZimletBase	

ZmObjectHandler	

<zimlet name="com_zimbra_myzimlet" version="1.0”
description=”My Zimlet">
 <include>com_zimbra_myzimlet.js</include>
 <handlerObject>com_zimbra_myzimlet_HandlerObject</
handlerObject>
</zimlet>

78

SINGLE-CLICK COMPARISON
<zimlet name="com_zimbra_hello4" version="1.0"
description="com_zimbra_hello4: Panel Item with Clicks">
 <zimletPanelItem label="Test Panel Item">
 <onClick>
 <canvas type="window" width="300" height="300" />
 <actionUrl method="get" target="http://maps.google.com" />
 </onClick>
 </zimletPanelItem>
</zimlet>

// Called on single click.
ClicksZimlet.prototype.singleClicked = function() {
 window.open ("http://maps.google.com", ”google_maps”,
 "width=300,height=300");
};

XML	API	

JS	API	

<zimlet name="com_zimbra_clicks" version="0.1" label="Clicks" description="Shows a
single-click in JS.">
<include>com_zimbra_clicks.js</include>
<handlerObject>com_zimbra_clicks_HandlerObject</handlerObject>
<zimletPanelItem label="Clicks">
<toolTipText>Click in JS</toolTipText>
</zimletPanelItem>
</zimlet>

79

APPCTXT
Zimbra Global Object

80

APPLICATION	CONTEXT

appCtxt (ZmAppCtxt.js) is a global object that provides access to various applications, dialog boxes
and also centrally stores information about current application and about current user information,
preferences etc.

When an application is loaded and active:

appCtxt.getCurrentApp() – returns current application object
appCtxt.getCurrentAppName() –returns current app’s name
appCtxt.getCurrentController() –returns current app’s controller

Several Zimbra’s widgets also register themselves to appCtxt
appCtxt.getNewFolderDialog().popup() - shows Folder dialog widget
appCtxt.getNewTagDialog().popup() – shows New Tag dialog widget

Access Account information:

appCtxt.getActiveAccount() – returns active account
appCtxt.getActiveAccount().settings –returns all preferences/settings

https://files.zimbra.com/docs/zimlet/zcs/8.6.0/jsapi-zimbra-doc/symbols/ZmAppCtxt.html

81

ZIMLET USER PROPERTIES

82

USER PROPERTIES

In Zimlet Definition XML file:

<userProperties>
 <property type="string" name="my_string" minLength="3" maxLength="3" label="String"/>
 <property type="boolean" label="Priority?" name="my_test_priority" />
 <property type="date" label="Delivery Date" name="my_test_delivery_date" />
 <property type="number" label="Your ID number" name="my_test_id_num" />
 <property type="enum" name="my_enum" label="List" value="LIST_OF_STUFF">
 <item label="List Item 1" value="LIST_ITEM_1"/>
 <item label="List Item 2" value="LIST_ITEM_2"/>
 </property>
</userProperties>

For More Details on attributes and schema structure: Refer DwtPropertyEditor.js

83

PROPERTY EDITOR (DWTPROPERTYEDITOR)

By default, when	double-clicked	on	the	Zimlet	Panel	Item,	the	property	editor	dialog	is	
launched.

84

USER PROPERTIES: JS API

•  getUserProperty API: Returns the value of the property
 Usage: this.getUserProperty(“my_property”)

•  setUserProperty API: Used to set/save user properties.
o  this.setUserProperty(“my_property”, “text”); ß This simply sets user

property in memory.
o  this.setUserProperty(“my_property”, “text”, true); ß This sets the user

property and immediately saves the properties and won’t callback.
•  saveUserProperties API: Saves all properties and returns control to the callback.

 Usage: this. saveUserProperties(callback)
 Example:
 this.saveUserProperties(new AjxCallback(this, this._propSavedHandler));

85

USER PROPERTIES: JS API

Can	intercept	proper0es	prior	to	saving	by	implemen0ng:
/**
 * This method is called by the zimlet framework prior to user properties being saved.
 *

 * @param {array} props an array of objects with the following properties:
 *
 * props[...].label {string} the property label
 * props[...].name {string} the property name

 * props[...].type {string} the property type
 * props[...].value {string} the property value
 *

 * @return {boolean} <code>true</code> if properties are valid; otherwise,
<code>false</code> or {String} if an error message will be displayed in the standard
error dialog.

 */
ZmZimletBase.prototype.checkProperties = function(props) { ... };

86

ZIMLET API HOOKS

87

WHAT DOES ZIMLET HOOK MEAN ?

Hook denotes a place in Zimbra code where you dispatch an event of certain type, and
if this event was registered by any Zimlet, then it would be handled by this registered
function, otherwise nothing happens. This allows extensibility without exposing the
core code.

Example:
•  initializeToolbar
•  onMsgView
•  onContactEdit
•  emailErrorCheck
•  addCustomMimeHeaders

88

ZIMLET WIDGETS
Create buttons, menus, dialogs etc.

89

GENERIC	STEPS	TO	ADD	A	DWT	WIDGET	

1.  Create a DOM element(usually DIV, sometimes TD) with a unique ID.
2.  Create the widget.
3.  Do document.getElementById(“id”).appendChild(widget.getHtmlElement());

Step1: A line from custom Dialog’s view
html[i++] = "<DIV id='hellowidget_button1'></div>";

Step2: Create button widget
var btn = new DwtButton({parent:this.getShell()});
btn.setText("Simple Button1");//button name
btn.addSelectionListener(new AjxListener(this, this._buttonListener, "Simple Button1"));

Step3: Append the widget to the DOM
document.getElementById("hellowidget_button1").appendChild(btn.getHtmlElement());

90

DIALOGS

91

CREATING ZIMLET
APPLICATION

92

ZIMLET	APPLICATION

•  Typical way to create a Zimlet application is by using createApp API
•  [returns appIdName] = this.createApp(<visible name>, <icon>, <tooltop>);
•  Since we have to show the app when user logs in to Zimbra, we call this API in “init”

function

 com_zimbra_zimletAppExample.prototype.init = function() {
 this. _tabAppName= this.createApp("Bare App", "zimbraIcon", "Basic app in a new tab");

 } // optional 4th argument to set the position of the tab, default last
After creating a zimlet application, the Zimlet handler object receives following events:
•  ZmZimletBase.appActive()
•  ZmZimletBase.appLaunch()

93

TAB AREAS: MAIN CONTENT, TOOLBAR, OVERVIEW

94

ZIMLET APPLICATION: APPACTIVE	API

When the user clicks on the app’s tab (makes the app active) or when the user moves
away from the app (makes app inactive), appActive API is called by Zimbra. The
purpose is to allow us to initialize some objects or to disable some stuffs.

appActive(appName, active)
@appName : Name of the current App or Name of the app that the user is switching to.
@active: boolean indicating if the app is active or not

com_zimbra_zimletAppExample.prototype.appActive = function(appName, active) {

 if(!active) {
 appCtxt.setStatusMsg(['Hiding app ', appName].join("")));
 } else {
 appCtxt.setStatusMsg(['Showing app ', appName].join(""));
 }

95

ZIMLET APPLICATION: APPLAUNCHAPI

AppLaunch API is called when the app is first launched. It is called after appActive is
called and is called only once. Since this API is called only once, it can be used to
create all the widgets and other html contents to create the app.
appLaunch(appName, [params])
@appName: appNameId – a unique id that’s been given to the app by Zimbra
@params: Usually some search callback. You can ignore this.
	
Example:	Adding	a	toolbar	button	
var	app	=	appCtxt.getApp(appName);	//get	access	to	app	from	appName	
var	toolbar	=	app.getToolbar();	//returns	the	toolbar	for	the	current	app	
toolbar.createButton("TEST",	{text:"Test	Toolbar	Button"});	
toolbar.addSelectionListener("TEST",	new	AjxListener(this,	this._handleToolbarButton));	

96

ADDING	WIDGETS	TO	ZIMLET	APP

Adding Html content to the Zimlet App:
app.setContent("<h1>Hello World</h1>");// Used in Social Zimlet

Adding Dwt Widget to the View area:
var button = new DwtButton({parent:DwtShell.getShell(window)});
button.setText("Hello World");
app.setView(button);

97

ZIMLET TAB LIFECYCLE

98

ZIMBRA SOAP/JSON API

99

ZIMBRA SOAP API FORMATS

•  SOAP (Simple Object Access Protocol)
§  SOAP XML formatted envelopes
§  Heavier & slower than JSON

•  JSON (JavaScript Object Notation)
§  Data is sent in JavaScript object

form.
§  JSON requests are lightweight.

<GetAccountInfoRequest
xmlns="urn:zimbraAccount">

 <account by="name">user1</account>
</GetAccountInfoRequest>

GetAccountInfoRequest: {

 _jsns: "urn:zimbraAccount",
 account: {
 _content: "user1",
 by: "name"
 }

}

100

TIPS/TRICKS

101

MONKEY PATCHING: OVERRIDING UTILITY

com_zimbra_example.prototype.overrideAPI = function(object, funcname, newfunc) {
 newfunc = newfunc || this[funcname];
 if (newfunc) {
 var oldfunc = object[funcname];
 object[funcname] = function() {
 newfunc.func = oldfunc; // (A) can be called as arguments.callee.func from inside new function.

 return newfunc.apply(this, arguments);
 }
 object[funcname].func = oldfunc; //(B) called as object[funcname].func from other functions.
 }
};

102

UTILITY FUNCTIONS AVAILABLE

•  Enable JSP support in Zimlets: (false by default)
 zmprov ms hostname zimbraZimletJspEnabled TRUE

•  Reloading Zimbra Web Client

window.onbeforeunload = null;
var url = AjxUtil.formatUrl({});
ZmZimbraMail.sendRedirect(url);

•  Get logged in username:

 this. getUsername() (ZmZimletBase)
•  Get logged in user’s zimbra internal user id:

 this. getUserID() (ZmZimletBase)

103

USEFUL LINKS

•  Zimbra Forums: https://forums.zimbra.org/

•  Zimlet Gallery: https://zimbra.org/extend/

•  Zimbra Wiki: https://wiki.zimbra.com

•  Zimlet Developer Guide:
https://wiki.zimbra.com/wiki/Zimlet_Developers_Guide:Introduction

•  Zimbra JavaScript API
https://wiki.zimbra.com/wiki/Zimlet_Developers_Guide:Zimbra_JavaScript_API_Reference

•  Zimbra Community : https://github.com/Zimbra-Community

104

THANK YOU

104	

GitHub:	hbps://github.com/tarangkhandelwal	
Email:				tarang.khandelwal@synacor.com	

	
	

